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An ~ymptotic expansion is derived for the solution of two-point boundary 
value problem of a uniquely perturbed system of two equations with small 

parameters at higher derivatives, a problem that arises in the theory of con- 

tinuous-flow reactors. Formulas are obtained for concentration of reagents, 

which are uniformly valid throughout a reactor with two-stage reaction se- 
quence and accurate within the quadratic term in small parameters. A com- 
parison is made of the numerical and asymptotic solutions. 

It would seem that the investigation presented in [ 2 ] of the steady oper- 
ation mode of a reactor with single-stage isothermal reaction at high P&let 

numbers, based on approximate methods of nonlinear mechanics, was the 

first to tackle this subject, Formal extension of the method used in [2] to 
a system of equations was carried out in [ 3 ,4 ] for certain limit cases. 

1. The complete system of equations defining an isothermal reactor with two-stage 
reaction sequence includes equations of conservation for the initial and intermediate 
products [ 5 1. A number of assumptions was used in [ 5 ,6 ] for the mathematical form - 

ulation of the steady operation mode of reactor. It is as follows: 

e,y,” = Ya’ + &&Gn, E$YS” = Y< + Q@3m - &&y&n 

WC% = Yc& - 1, e&$ = & 
(1.1) 

for t=+O 

y,’ = pi = 0 for t = 1 

(ET = D, I u&, h, = k&i,'-i (-0) Iu,; y = a, #I; s = n, n) 

where primes denote differentiation with respect to arguments of functions ; e,,-* is 
the P&let number with y = a or fj denoting the initial or intermediate products, 

respectively, u. is the mean velocity of mixture in the reactor duct ; & is the co- 
efficient of partial diffusion ; L is the reactor length; t = z / L is the dimen- 

sionless coordinate along the reactor axis ; & is the constant of the reaction rate; 
= cv I c (-0) is the dimensionless partial concentration, where e (-0) is the 

p%ial conc~tration at the reactor inlet. The reactor occupies the region 0 < 2 < 1. 
We investigate the.most interesting from the practical point of view case of high 

P&let numbers, i. e. e,, < 1“ in which_ (1.1) represents a two-point boundary value 
problem for a system of two equations with small parameters at higher derivatives Such 

system is uniquely perturbed with respect to the small parameters 8, and eb . 
Let us derive the solution of problem (L 1) in the outer region which is represented 

by the halGinterva1 of 0 < t < 1. We represent the initial product concentration in 

tbe form of the asymptotic expansion 
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!/a (q = Xa @) = i E&P (q 
n=o 

(1.2) 

in the small parameter e,. Owing to the relative complexity of the second equation 
of system (1.1) we represent the intermediate product by the asymptotic series 

(1.3) 

in two small parameters E, and Fp. 

The derivation of asymptotic expansions of solutions for (1.1) and (1.2 ) is deter - 

mined by the system of zero approximation which is obtained from (1. 1) by setting 
E a= E[$ = 0 and defines the work of an isothermal reactor with a consecutive re- 

action in a perfect displacement mode. The concentration of reagents at the reactor 

inlet is used as the boundary condition. In the mode of perfect displacement the value 
of the initial product along the reactor length is determined by the simple formula 

XJO) (i) = {- (1 - n) hut + I}-’ (1.4) 

The analytic solution of the second equation of the zero approximation which de- 
termines the value of the intermediate product is generally difficult. Let us consider 

the second order reaction, i.e. n = m = 2. In that case the sought equation is a 

Riccati equation, and the intermediate product concentration is determined by the fol- 

lowing formulas : 

Qp’O) (t) = A c(O) (t) + 2 (t) (1.5) 

2 (t) = - (h(O) (t))” {I + A[& i (%a)1 [o&(O) (t))” - II}-’ 

A = (A, / (23Lp)) (1 + a), a = (1 -t 41L, / &,)“~ 

In the asymptotic expansion of solution in the outer region the effects of diffusion on the 
processes that take place in the reactor is taken into account in subsequent approximations 

with respect to the small parameters EU and “1”;. It follows from (1. 1) that the first 

and subsequent terms of outer expansions (1.2 ) and (1.3 ) conform to the nonhomoge - 
neous linear equations 

XC’ + 2haXpXp = FF’ (t). ,n > 1 (1.6) 

The right-hand sides of equations of this system are determined by lower approxi- 
mation solutions using the following formulas : 
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Fgn’ n) = x’s”* a-1)’ - h, 2 2 

l<n+n-1 1Ck<s-1 
xf;“-n, r-k) x(Bn$ k) + 

ha&*0 62m xLrn”“‘xP’ 

Solutions of the first and subsequent approximations may be expressed in terms of 
the zero approximation, which simplifies the derivation of the asymptotic expansion in 
the outer region in comparison with the method used in [ 2 1. For instance, the first and 
second terms of the asymptotic expansion (1.2 > for the initial product can be represented 
by formulas 

j&(l) (1) = - G(O)2 (1) 11 + 2 In yjp) (1)) 

xoc’2’ (t) = (LXa’yl))a (9 (X@(O) (2) - 1) + 4 I~‘@ (1) x 

ln XCP (t) (2 + In %2(O) (0) + 11) 

and, owing to the linearity of system (1.6 ) with respect to the unknown functions, its 
solution can be determined by the more general formulas 

Xa (m* a) (t) = x&“‘” (t) { xLm-1” (+ 0) + 
(1.7) 

\ &‘(x&“’ (t’))-” FLrn’ @‘)j + 0 @a) 
0 t 

xs trnvs) (t) = cp (t) fxbm* +l) (+ 0) + $ &‘F’K”-” @‘) ‘p-1 (f) + 

0 @ax (e,, q3))) 

The first of these is obtained with an accuracy within 0 (Ed) and the second within 

0 (max (e,, ep) ). 
Functions Xptnlrn) (t) are shown in Fig. 1 for & = & = 1 and E, = 

eP = 0.1 , and the values of n and m are shown there in parentheses, 

2. To have the solution-which is to be uniformly valid in the whole segment 
0 < t < I-conform to boundary conditions we introduce at the reactor outlet in 

the neighborhood of point t = 1 a “boundary layer” . Substituting the variables 

rl?J = (1 - t) / E, (7 = CC, p) for the input system of Eqs. (1.1) in the “boundary 

layer ‘I, in the particular case of second order reaction we obtain 

q/ + ‘kz’ = ec& ‘#a21 9,; ++a = efi [A,3 9,32 - &c%z21 (2.1) 
qa’ = $3’ = 0 for nV = 0 

(9, (0 = *CC (Ta), 33 (0 = %3 (Ii)) 

We define the asymptotic expansion of solution of system (2.1) in small paramet- 

ers Ea and Ed by the formulas 
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The perfect displacement mode is not realized in the inner region, since the dif- 
fusion transport of the reagent is there comparable to convective transport. Concentra - 
tion changes due to chemical reaction are neglected. The system of zero approximation 
equations is obtained from (2.1) by setting 

Fig, 1 

ECZ = ep = 0, and has thesimplesolution $a(‘) (QG) = &s(O), $p(OyO) (176) = h@O). 
The constants h,(s) and &,(s@) which appear in the zero approximation are de- 

termined in the course of joining the outer solution, represented by the asymptotic ex- 
pansion (1.2 ) , (1.3 ), with solution (2.2 ) for the boundary layer. Changes of the reagent 
concentration due to the chemical reaction are taken into account in the first and sub - 

sequent approximations of expansion (2.2 ) . 

From the system of first approximation equations 

,$$” + ,$” = Ftn) 
a 7 n = 1; ,j,im, “‘“f $‘K”’ n)’ = F’a”. n), rn+n=1 (2.3) 

s$)’ = *km* n)’ = 0 for qa = qp = 0 

F($’ _ 3La$g12 7 @’ l) = ha,@ O) 2 _ ha,&@ 2, +’ 0) = () 
P 

we obtain for the first term of expansion (2.2 ) the expression 

(2.4) 

which satisfies the boundary condition that the derivative must vanish at the right-hand 
end of the segment. In that case the constants h,(l) and hp(0~f) are functions of 

h,(O) and l,@O*O) , while constants &,(r), hm(OJ), hSo(lYO) which appear in (2.4) 
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are determined in the course of joining the sought solution with solution (1.1) e ( 1.2 ) , 
The described above algorithm of solution derivation is used for calculating sub - 

sequent expansions of (2.2). From the second approximation equations which differ 

from Eq. (2.3 ) by the value of functions 

@’ = 2h /$$$1) 
au0 a7 

Ff* 1) = (F(pO’o) _ @), 

F(B* 2) r= ‘4$$ “‘,&% I), @ho) = 0 

in its right-hand side and are determined by solutions of lower approximations, we thus 

obtain the second term of expansion (2.2 ) 

Q)v=($- ) qv -hv+fl)e-Y ~=a, P 
which satisfies the boundary condition that the derivative must vanish at the reactor out- 
let. The expression for gp) was obtained on the assumption that 1 8, - 86 1 = 

0 (8a f 8s). When 1 % - 861 = 0 (%z f 8~) it is necessary to substitutein 

~$1~1) the quantity- (Q + 1) for As1 , Constants k&s) and ~~{~3k) (m + k = 2) 
are determined, as in lower approximations e in the course of joining asymptotic expansions. 
The generalterm of the asymptotic expansion (2.2) can be expressed in termsof expon- 

ents of quantities $a(“) = 0 (8,” OXP l {- va}) and 1()s(n@t = 0 @ax (e,, 
efJn+m exp (-- ~6)) for the initial and intermediate products t respectively. 

3. The constants which appear in solutions of the boundary layer are obtained in 
the course of joining the asymptotic expansions of solutions in the inner and outer regions. 

For this we pass to “intermediate variables” 7lv = ?‘)v” / /+Q and t = 1 - (av / 

Pv) rlr+ (7 = a7 B) on the assumption that b = I”,, (e,,) and /.+ = 0 (Ev). 

When joining the asymptotic expansions it is convenient to represent the outer solution, 

which is a function of 2 = 1 - (a, f &)qv*, in the form of a Taylor series in the 

small parameter eJPY* We restrict the joining of the inner and outer asymptotic 

expansions to the zero, ff rst , and second powers of the intermediate variable, which cor- 

responds to joining to within terms of order (a? / IQ2 < 1. Thus in the zero ap - 

proximation for the outer solution in small parameters ea and ep, neglecting small 
exponential terms in the inner solution, and equating coefficients at corresponding powers 

of the intermediate variable of the inner and outer expansions I we obtain the system 

# (1) = @, # 0) (1) =@ O), $) (1) = _ @‘, X$“’ O)‘(f) = /@ 1) (3.1) 

(0)” 
Xa = 2x&’ ) x’s”* co* (1) = 2 [h&p’ l) - h&‘] 



332 B. M . Markeev and A. A. Platonov 

The first two formulas directly determine constants h,@) = X-JO) (1) and 
hpo(O’O) = “&(O’O) (1) in terms of the zero term of the outer solution asymptotic ex- 

pansion, while the fourth, fifth and sixth formulas are identically satisfied. 

To prove the last statement it is, sufficient to express the first and second derivat - 
ives of xg) and xF!~) in terms of these functions, using the system of equations 
for the determination of the zero term of the outer solution asymptotic expansion and, 
then, substitute these into (3. 1) . To remain within the required accuracy of matching 
the zero approximation solutions with respect to parameters F~ and e13 we restrict 

the joining of the outer and inner solutions at zero and first powers of the intermediate 
variable, As previously, disregarding exponentially small terms in the inner solution 

asymptotic expansion and equating coefficients at like powers of the intermediate var- 
iable of the inner and outer expansions, we obtain a system of six equations. Three of 

these equations determine the constants 
h$ z ~2’ (I), @,‘I) = x$), ‘) (I), and h$&O) = $$O) (1) 

in terms of first terms of the outer solution asymptotic expansion. The remaining equa- 

tions of that system represent identities *This can be proved as above in the example of 
the algorithm for defining the unknown constants in the inner solution in the case of 

zero approximation with respect to the small parameters e, and ~6. 
It should be pointed out that in the theory of the isothermal reactor with single 

stage reaction sequence [ 2 ] the inner solution was obtained by the iteration method. 
Owing to some confusion as regards the orders with respect to small parameter of the 

considered there problem, the determination of the unknown constants of the inner 
solution became somewhat complicated. In more complex cases of systems with several 
small parameters that method of deriving asymptotic solution was found to be ineffec - 
tive , since it made it impossible to analytically determine the unknown constants and 

to obtain a solution that is uniformly applicable along the whole segment. On the other 
hand, the described algorithm for the derivation of asymptotic expansion of the two - 

point boundary value problem makes it possible to obtain a uniformly valid solution for 
the more complex system of equations with several small parameters. 

In the case of an isothermal reactor with a two-stage reaction of the second order 
we separate the common part, and obtain the interval of the asymptotic series of solu - 

tion of problem (1.1) which is uniformly valid throughout the interval 

(3.2 1 

which is accurate to quadratic terms in small parameters ECZ and efi. The last two 
terms determine the exponential part of solution which is real in the boundary layer 
near I = 1. Expressions for the terms of asymptotic expansion in the outer and inner 
regions Xa(“), Xfi(“lrn) and qa(*), $s(n,m) , respectively, appear in ( 1.4 ) , (1.5 ), 
( 1.7 ) , (2.4 ) , and (2.5 ) , Because of the requirement for the derivative of the reagent 
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concentration to vanish at the reactor outlet, stipulated by the boundary condition, the 
effect of the exponential part of solution (3.2) makes itself felt already in the first ap- 
proximation with respect to the small parameters I?, and ep. In that approximation 
this effect on the initial and intermediate products is determined by partial diffusion of 

the respective product, However in the second approximation the boundary layer for the 
intermediate product is formed under the effect of diffusion of the intermediate, as well 
as of the initial product. 

Table 1 

t 

0.0 
0.2 

E 
0:s 
1.0 

0.0 
0.2 

:*: 
0:s 
1.0 

gJa x 10” 

E 
698 
620 
560 
527 

813 
653 

E 
418 
394 

yp x 10’ 

900 
789 

12 
E 
800 
746 
663 
627 

z% 

600 
648 
579 

E 
431 

“g) x w 

119: 
273 
333 
369 
365 

2: 
678 

!E 
540 

065 
173 

% 
314 
326 

246 105 
634 269 
487 366 
418 422 
379 452 
374 464 

vp x 10’ 

E 1:: 
279 277 
331 335 
z!: 384 370 

loo 040 
174 179 
231 257 

;z 299 320 
313 336 

200 235 % 
322 431 

% 456 465 
452 474 

Let us turn to the solution of the two-point boundary value problem (1.1) which 
represents an infinite segment of an asymptotic series. It is possible to maintain that for 
a finite series of asymptotic expansion there exists a positive number e > 0 and a 
number N dependent on e such that for all e,, eg < e and n > N the 
remainder term I YP - Y, 1 < 0 (rP*~), y = a, /3. The asymptotic solution 

y, (v = a, p) of problem (1.1) then exists and is unique .To prove the above state - 
ments it is sufficient to take into consideration the estimate of the common term of 
asypmtotic expansions of the inner and outer solutions which appear at the ends of Sec- 
tions 1 and 2 t and use the standard method of proof proposed in [ 3 f , The problem of 
specific determination of the quantity E which represents the radius of convergence of 

asymptotic expansions, remains however open. 
The concentration of initial and intermediate products along the reactor is shown 

for comparison in Table 1 for the following cases : A s, = aa = 0.1, h, = 1, = 1, 
B Ed = 0.2, ea = O.l,h, = 1,X6 = 2, and,C cr, = 0.2, eg = O.l,h, = 2,h6 = 1. The 
tabulated data were obtained on a computer by the trial-and-error method using solutions 
of (1.1) and the value of the finite series of asymptotic expansion of the two - point 
boundary value problem solution with two and three terms for various sets of parameters. 
The tabulated data shows that the three-term asymptotic expansion satisfactorily con - 
verges to the numerical solution in a fairly wide range of parameters that are of practical 
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interest. The convergence improves with decreasing parameters E,,, h, and y = a, B. 
A worsening of convergence is noticeable in case C when ace = 0.2, eg = 0.1, & = 

2, $j = 1 at the reactor inlet. 

The paper [ 7 ] should be noted in this connection, where the criterion of asymptotic 
solution convergence was obtained by matching solutions of the two-point psoblems in. 
the inner and outer coordinates at the reactor inlet, However such approach to the 

derivatiort of convergence criterion is intuitive, and the criterion itself is unnecess- 
arily stringent. 

Authors thank V, V. Struminskii for his interest in this work, and Iu . P, Gupalo 
and Iu . S , Rianzantsev for its discussion. 
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